North Penn School District

Elementary Math Parent Letter
Grade 6

Unit 4 - Chapter 11: Surface Area and Volume

Examples for each lesson:

Lesson 11.1

Three-Dimensional Figures and Nets

Solid figures have three dimensions-length, width, and height.
They can be named by the shapes of their bases, the number of bases, and the shapes of their lateral faces.

Identify and draw a net for the solid figure.
Step 1 Describe the base of the figure.
The base is a square.
Step 2 Describe the lateral surfaces.
The lateral surfaces are triangles.
So, the figure is a square pyramid.
Step 3 Name the shapes to be used in the net. Then make a sketch. Draw a square for the base, and four triangles for the lateral faces.

Lesson 11.2

Explore Surface Area Using Nets

The net of a solid figure shows you all of the faces or surfaces of the figure. A net can help you find the surface area of a figure.

Find the surface area of the rectangular prism.

Step 1 Make a net of the rectangular prism. The prism has 6 rectangular faces, so the net has 6 rectangles.

Step 2 Find the area of each face of the prism.
First Way: Count the grid squares on each rectangle to find its area.

Second Way: Calculate the area of each rectangle by multiplying length \times width.

Step 3 Add the areas of all the rectangular faces.

A: 8 squares	$4 \times 2=8$
B: 8 squares	$4 \times 2=8$
C: 4 squares	$4 \times 1=4$
D: 4 squares	$4 \times 1=4$
E: 2 squares	$2 \times 1=2$
F: 2 squares	$2 \times 1=2$
28 squares	28 square inches

So, the surface area of the rectangular prism is 28 square inches (in. ${ }^{2}$).

Lesson 11.3

Algebra • Surface Area of Prisms

You can find the surface area of a figure by adding the lateral surface area to the sum of the areas of the bases.

10 in
Use a net to find the surface area.

Step 1 Draw a net.
Note any faces that have equal areas.

Step 2 Both triangular bases have the same area.

Base A: $A=\frac{1}{2} b h=\frac{1}{2} \times 6 \times 8=24$ in. 2
Base E: $A=24$ in. 2
Face B: $A=/ w=6 \times 12=72 \mathrm{in}^{2}{ }^{2}$
Face C: $A=/ w=8 \times 12=96$ in. 2
Face D: $A=/ w=10 \times 12=120 \mathrm{in}^{2}$

Step 4 Add the areas: A + B + C + D + E
$24+72+96+120+24=336$ in. 2

So, the surface area of the triangular prism is 336 square inches (in. ${ }^{2}$).

More information on this strategy is available on Animated Math Model \#34.

Lesson 11.4

Algebra • Surface Area of Pyramids

To find the surface area of a pyramid, add the area of the base to the lateral area. The lateral area is the combined area of the triangular faces.

Find the surface area of the square pyramid.
Step 1 The base is a square with side length of 6 in . Use the formula $A=s^{2}$ to find the area. Substitute 6 for the variable s.
$A=6^{2}=36 \mathrm{in} .^{2}$

Step 2 The lateral faces are four triangles with base of 6 in . and height of 8 in . Find the area of one triangular lateral face using the formula $A=\frac{1}{2} b h$. Substitute 6 for b and 8 for h.

$$
A=\frac{1}{2}(6)(8)=24 \mathrm{in}^{2}
$$

Step 3 Multiply by 4 to find the total lateral area. $L=24 \times 4=96$ in. ${ }^{2}$
Step 4 Add the area of the base and the lateral area. $\quad S=36 \mathrm{in} .^{2}+96 \mathrm{in} .^{2}=132 \mathrm{in} .^{2}$

So, the surface area of the square pyramid is 132 square inches (in. ${ }^{2}$).

Lesson 11.5

Fractions and Volume

Find the volume of a rectangular prism that is $2 \frac{1}{2}$ units long, 2 units wide, and $1 \frac{1}{2}$ units high.

Step 1 Stack cubes with $\frac{1}{2}$-unit side length to form a rectangular prism.

Length: 5 cubes $=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2 \frac{1}{2}$ units
Width: 4 cubes $=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2$ units
Height: 3 cubes $=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1 \frac{1}{2}$ units

Step 2 Count the total number of cubes.

Step 3 It takes 8 cubes with $\frac{1}{2}$-unit side lengths to make 1 unit cube. So, each smaller cube has $\frac{1}{8}$ the volume of a unit cube.

60 cubes

Divide 60 by 8 to find how many unit cubes it would take to form the prism. Write the remainder as a fraction and simplify.

$$
60 \div 8=7 \text { R } 4
$$

$$
7 \frac{4}{8}=7 \frac{1}{2}
$$

So, the volume of the prism is $7 \frac{1}{2}$ cubic units.

Lesson 11.6

Algebra • Volume of Rectangular Prisms

You can find the volume of a prism by using the formula $V=B h$. V stands for volume, B stands for the area of the base, and h stands for the height.

For a rectangular prism, any face can be the base, since all faces are rectangles.

Find the volume of the rectangular prism.

Step 1 Find the area of the base.
The base is $2 \frac{1}{2} \mathrm{ft}$ by $3 \frac{1}{2} \mathrm{ft}$.
$A=1 \times w$
$A=2 \frac{1}{2} \mathrm{ft} \times 3 \frac{1}{2} \mathrm{ft}=8 \frac{3}{4} \mathrm{ft}^{2}$
So, the volume of the rectangular prism is $43 \frac{3}{4} \mathrm{ft}^{3}$.
Find the volume of the cube.
Step 1 Because the length, width, and height are
Step 1 Because the length, width, and height are
all equal, you can use a special formula.

$$
\begin{aligned}
& V=B h=l \times w \times h \\
& V=s^{3}
\end{aligned}
$$

Step 2 Multiply the area of the base by the height.
$V=B h$
$V=8 \frac{3}{4} \mathrm{ft}^{2} \times 5 \mathrm{ft}^{2}=43 \frac{3}{4} \mathrm{ft}^{3}$

Step 2 Substitute $2 \frac{1}{2}$ for s.

$$
V=s^{3}=\left(2 \frac{1}{2}\right)^{3}=\left(\frac{5}{2}\right)^{3}
$$

$$
V=\frac{5}{2} \mathrm{yd} \times \frac{5}{2} \mathrm{yd} \times \frac{5}{2} \mathrm{yd}=\frac{125}{8} \mathrm{yd}^{3}
$$

$$
=15 \frac{5}{8} y d^{3}
$$

So, the volume of the cube is $15 \frac{5}{8} \mathrm{yd}^{3}$.

More information on this strategy is available on Animated Math Model \#35.

Lesson 11.7

Problem Solving • Geometric Measurements

Leslie stores gardening supplies in this shed shaped like a rectangular prism. What is the area of the ground covered by the shed?

Read the Problem	Solve the Problem
What do I need to find? I need to find \qquad	Choose the measure-area, surface area, or volume-that gives the area of the ground covered by the barrel. Explain.
What information do I need to use? I need to use	Choose an appropriate formula.
How will I use the information? First, I will decide \qquad \qquad . Then I will choose a \qquad I can use to calculate this measure. Finally, I will \qquad	Replace the variables / and w in the area formula with their values in the dimensions of the shed. $I=$ \qquad ft $w=$ \qquad ft Evaluate the formula. $A=$ \qquad \times \qquad $=$ \qquad ft^{2}

Vocabulary

Lateral area - the sum of the areas of all the lateral faces or surfaces of a three-dimensional figure

Net - a two-dimensional pattern that can be folded to make a three-dimensional shape
Solid figure - a three-dimensional figure
Surface area - the sum of the areas of all of the faces or surfaces of a solid figure
Volume -- a measure of the amount of space a solid figure occupies
Area - the number of square units needed to cover a flat surface
Base (of a solid figure) - a flat surface of a solid figure by which the figure is measured or classified

Polygon - a closed plane figure formed by three or more line segments that intersect only at endpoints

Prism - a solid figure that has two congruent, polygon-shaped bases and other faces that are all parallelograms

Pyramid - a solid figure with a polygon-shaped base and other faces that are all triangles and that meet at a common vertex

